Муниципальное бюджетное общеобразовательное учреждение «Белоярская средняя школа»

СОГЛАСОВАНО	УТВЕРЖДЕНО
Заместитель директора по ВР	Приказ МБОУ «Белоярская СШ»
Бахтина В.Е.	№103/1 от 29.08.2025
28 августа 2025	

Дополнительная общеобразовательная (общеразвивающая) программа технической направленности «Робикум»

Срок реализации: 1 год Возраст учащихся: 7-12 лет

Автор-составитель: Титов А.О., учитель математики

1. Пояснительная записка

Дополнительная общеобразовательная общеразвивающая программа «Робикум» реализуется в соответствии с технической направленностью дополнительного образования.

Программа разработана в соответствии с:

- Федеральным законом «Об образовании в Российской Федерации» от 29 декабря 2012 года, № 273-ФЗ;
- Приказом Министерства просвещения Российской Федерации от 27.07.2022 № 629 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- Концепции развития дополнительного образования детей до 2030 года, утвержденная распоряжением Правительства Российской Федерации № 678-р от 31.03.2022;
- Постановлением Главного государственного санитарного врача РФ от 28.09.2020 N 28 «Об утверждении СанПиН 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи» (Зарегистрировано в Минюсте России 18.12.2020 N 61573);
- Уставом Муниципального бюджетного общеобразовательного учреждения «Белоярская средняя школа».

Адресат программы: обучающиеся 9-13 лет, в количестве 15 человек.

Уровень освоения программы: базовый.

Актуальность программы. Программа соответствует действующим нормативным правовым актам и Концепции развития дополнительного образования в сфере технического творчества и направлена на формирование творческой личности, живущей в современном мире. Технологические наборы LEGO MINDSTORMS EV3 ориентированы на изучение основных физических принципов и базовых технических решений, лежащих в основе всех современных конструкций и устройств.

На занятиях используются конструкторы наборов ресурсного набора серии LEGOMINDSTORMS EV3.

Используя персональный компьютер или ноутбук с программным обеспечением, элементы из конструктора, ученики могут конструировать управляемые модели роботов. Загружая управляющую программу в специальный микрокомпьютер, и присоединяя его к модели робота, учащиеся изучают и наблюдают функциональные возможности различных моделей роботов. Робот работает независимо от настольного компьютера, на котором была написана управляющая программа. Получая информацию от различных датчиков и обрабатывая ее, EV3 управляет работой моторов.

Современные дети фактически выросли в среде информационных технологий. Существенные изменения в технологиях, используемых в современной общеобразовательной школе, позитивно воспринимаются обучающимися, стимулируют их включаться более активно в учебный процесс.

Цель программы: ознакомление с основами конструирования и программирования учебных роботов.

Задачи:

Обучающие:

- развивать инновационную творческую деятельность обучающихся на занятиях по конструированию и робототехнике;
- развивать сформированные универсальные учебные действия через создание на занятиях учебных ситуаций, постановку проблемных задач, требующих выбора, обоснования и создания определенной модели конструкции, написания алгоритма действий робота с помощью пиктограмм графического языка;
- формировать представления о социальных и этических аспектах научно- технического прогресса;

Развивающие:

- развивать навыки взаимной оценки;
- развивать навыков рефлексии, готовность к самообразованию и личностному самоопределению;
- формировать представления о мире профессий, связанных с робототехникой и требованиях, предъявляемых такими профессиями, как инженер, механик;
- конструктор, архитектор, программист, инженер-конструктор по робототехнике.

Воспитательные:

- содействовать социальной адаптации обучающихся в современном обществе, проявлению лидерских качеств;
- воспитывать ответственность, трудолюбие, целеустремленность и организованность.
- формировать навыки коммуникативной культуры, позитивного взаимодействия и сотрудничества;
 - формировать высокую социальную активность;
 - формировать навыки работы с информацией;
 - воспитывать патриотизм;
- формировать навыки применения полученной информации для самостоятельной аналитической и творческой деятельности;
- формировать умения и навыки, обеспечивающие успешную самореализацию в жизни и обществе.

Уровень сложности – базовый.

Срок и объем освоения: 1 год, 68 педагогических часов.

Форма обучения: Очная.

Формы и режим занятий. Форма проведения занятий — групповая, индивидуальная, индивидуально-групповая. При формировании групп учитываются возрастные и индивидуальные особенности. Оптимальным составом для обучения являются группы из 15 человек. Занятия проводятся 1 раз в неделю по 2 часа.

Учебный план

		Колич	нество ч	асов
№ п/п	Разделы	Всего	Теория	Практика
1	Введение.	1	1	-
2	Конструктор LEGO Mindstorms EV3	1	1	_
3	Конструкторы LEGO Mindstorms EV3, ресурсный набор.	2	-	2
4	Микрокомпьютер (Лекция)	2	2	-
5	Датчики	4	3	1
6	Сервомотор EV3	4	3	1
7	Программное обеспечение LEGO Mindstorms EV3	1	-	1
8	Основы программирования EV3	2	2	-
9	Первый робот и первая программа	4	-	4
10	Движения и повороты	6	4	2
11	Воспроизведение звуков и управление звуком	4	3	1
12	Движение робота с ультразвуковым датчиком и датчиком касания	4	2	2
13	Обнаружение роботом черной линии и движение вдоль черной линии	4	2	2
14	Проект «Tribot»	6	-	6
15	Проект «Shooterbot»	6	-	6
16	Проект «Color Sorter»	6	-	6
17	Решение олимпиадных заданий	11	-	11

Содержание программы.

Введение (1 ч.)

Теория-1ч.

Техника безопасности на занятии. Введение в Робототехнику. Области использования роботов. Поколения роботов. История развития робототехники. Применение роботов. Цели и задачи курса.

Конструктор LEGO Mindstorms EV3. (1 ч.)

Теория-1ч.

Описание конструкторов LEGO Mindstorms EV3, ресурсный набор. Правила работы с набором. Особенности сборочных инструкций.

Конструкторы LEGO Mindstorms EV3, ресурсный набор. (2 ч.)

Практика-2ч.

Практическое знакомство с набором LEGO Mindstorms EV3. Основные детали конструктора иего возможности.

Микрокомпьютер. (2 ч.)

Теория-2ч.

Микропроцессор EV3. Краткое описание устройства, принципов функционирования. Знакомство с интерфейсом.

Датчики. (4 ч.)

Теория-3ч.

Знакомство с датчиками из набора LEGO Mindstorms EV3. Назначение датчиков. В набореLEGO Mindstorms EV3 есть четыре вида датчиков: датчик касания, датчик цвета (освещенности), ультразвуковой датчик, датчик гироскоп.

Практика-1ч.

Практическое применение полученных знаний о датчиках.

Сервомотор EV3. (4 ч.)

Теория-3ч.

Знакомство с сервомоторами из набора LEGO Mindstorms EV3. Краткое описание устройства, принципов функционирования. Варианты использования. Виды механических узлов, построенных на основе сервомоторов.

Практика-1ч.

Практическое применение полученных знаний о сервомоторах.

Программное обеспечение LEGO Mindstorms EV3. (1 ч.)

Практика-1ч.

Установка программного обеспечения. Системные требования. Интерфейс.

Самоучитель.

Основы программирования EV3. (2 ч.)

Теория-2ч.

Программирование. Панель инструментов. Палитра команд. Меню. Рабочее поле.

Окноподсказок. Панель конфигурации. Выгрузка и загрузка микропрограмм.

Первый робот и первая программа. (4 ч.)

Практика-4ч.

Подключение сервомоторов и датчиков. Сборка первой учебной модели. Первые простые программы. Передача и запуск программ. Пульт управления роботом.

Тестирование робота.

Движения и повороты. (6 ч.)

Теория-4ч.

Движение вперёд. Создание кода управляющей программы для прямолинейного движения вперёд. Настройка блока движения на заданное расстояние и заданное время. Настройка направления движения.

Поворот и разворот. Варианты различных комбинаций мощности моторов робота для выполнения поворота или разворота. Выполнение последовательности движений.

Алгоритмточное движения на повороте.

Практика-2ч.

Встроенное программное обеспечение («прошивка»). Загрузка программы. Загрузка управляющего кода в робота. Движение вперёд. Загрузка «прошивки» в блок EV3. Создание кода управляющей программы для прямолинейного движения вперёд. Настройка блока движения на заданное расстояние и заданное время. Настройка направления движения.

Воспроизведение звуков и управление звуком. (4 ч.)

Теория-3ч.

Принцип работы и приёмы управления звуковыми сигналами в LEGO Mindstorms EV3.Звуки Lego EV3, Блок «Звук», Режим «Воспроизвести файл», Звуковые файлы LEGO.

Практика-1ч.

Практическое применение полученных знаний о воспроизведении и управлении звуком.

Движение робота с ультразвуковым датчиком и датчиком касания. (4 ч.) Теория-2ч.

Принцип работы и приемы управления ультразвуковым датчиком и датчиком касания в LEGOMindstorms EV3.

Практика-2ч.

Практическое применение полученных знаний об ультразвуковым датчике и датчике касания.

Обнаружение роботом черной линии и движение вдоль черной линии. (4 ч.)

Теория-2ч.

Отслеживание линии. Построение алгоритма отслеживания края линии, используя блоки «Жди темноты» и «Жди света». Движение вдоль линии с одним датчиком. Движение вдоль линии с двумя датчиками света. Алгоритм движения робота с двумя датчиками.

Практика-2ч.

Создание программы движения вдоль линии. Создание оптимального алгоритма, используя условие (Если-Иначе, if-else). Создание программы с более эффективным алгоритмом для движения по линии. Преодоление перекрёстков и

сложных поворотов становится возможным для робота. Отслеживание линии. Использование датчика оборотов для движения робота на заданное расстояние.

Проект «Tribot». (6 ч.)

Практика-6ч.

В ходе выполнения данного проектного задания ученики выполнят проектирование, сборку, отладку, программирование и финальное испытание робота («Tribot» - робот на трех колесах, одно из которых используется лишь как точка опоры).

Проект «Shooterbot». (4 ч.)

Практика-4ч.

В ходе выполнения данного проектного задания ученики выполнят проектирование, сборку, отладку, программирование и финальное испытание робота («Shooterbot» - робот, стреляющий шариками).

Проект «Color Sorter». (5 ч.)

Практика-5ч.

В ходе выполнения данного проектного задания ученики выполнят проектирование, сборку, отладку, программирование и финальное испытание робота («Color Sorter» - робот, который может сортировать предметы по цветам).

Проект «Robogator». (4 ч.)

Практика-4ч.

В ходе выполнения данного проектного задания ученики выполнят проектирование, сборку, отладку, программирование и финальное испытание робота («Robogator» - робот эмитирующий вид и поведение аллигатора).

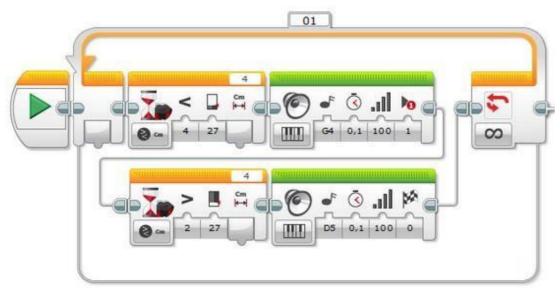
Решение олимпиадных заданий. 11 ч.

Практика-11ч.

Решение олимпиадных задач. Подготовка, программирование и испытание роботов в соревнованиях. Участие в мероприятиях, олимпиадах по робототехнике.

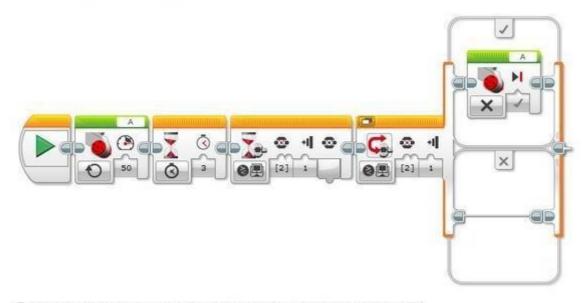
Планируемые результаты. Предметные:

- знание комплекса теоретических знаний, основ робототехники;
- осознание роли техники в процессе развития общества, понимание экологических последствий развития производства, транспорта;
- владение методами исследовательской и проектной деятельности;
- владение научной терминологией, методами и приёмами конструирования, моделирования и роботостроения;
- умение устанавливать взаимосвязь с разными предметными областями (математика, физика, природоведение, биология, анатомия, информатика и др.) для решения задач по робототехнике;
- владение ИКТ-компетенциями при работе с информацией.
- владение навыками работы с интерфейсом и основными опциями компьютерных программ;
- владение приемами работы с электронными файлами (сохранение, редактирование, запись, копирование);
- освоение приемов и навыков создания медийных продуктов, повышение грамотности в области ИКТ;
- освоение приёмов и методов практической работы на компьютере в основных файловых и офисных редакторах;


Метапредметные:

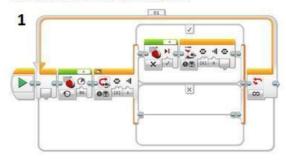
- сформированы навыки инновационного, критического мышления;
- сформированы навыки позитивного, творческого мышления;
- сформированы нравственные качества личности, самостоятельность и ответственность;
- сформирован познавательный интерес к конструированию и освоению современных технологий в инженерии и робототехнике;
- сформированы навыки, обеспечивающие социальное становление личности. Личностные:
- сформированы навыки коммуникативной культуры, позитивного взаимодействия и сотрудничества;
- сформированы положительные установки на творческую деятельность как важнейший элемент общей культуры;
- сформирована информационная грамотность;
- сформирована гибкость, адаптивность, инициативность, самодисциплина;
- сформирована способность к технологическим, организационным социальным инновациям;
- сформированы навыки работы с информацией.

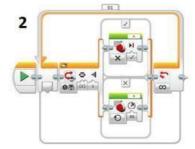
Оценочные материалы.


Оценка полученных образовательных, практических результатов у учащихся проводится с помощью методов педагогического наблюдения, выполнения заданий в ходе проведения занятий, решение практических задач.

Объясните, что делает программа *

	потом ноту D5 0,1 с
	асстояния не покажет меньше 27 см, потом играет ноту G4 до тех ояния не покажет больше 27 см после чего играет ноту D5 0,1 с
🧓 Ждет, пока не зазвуч	нит нота G4, потом ждет, пока не зазвучит нота D5
Market Tools Colonia (Colonia)	асстояния не покажет меньше 27 см, потом играет ноту G4 0,1 с, к расстояния не покажет больше 27 см и играет ноту D5 0,1 с
🔘 Другое:	

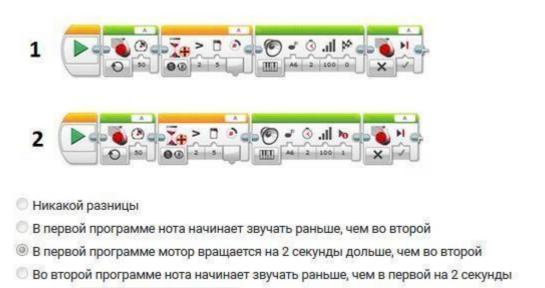

Объясните, что делает программа *



- Запускает мотор А и не останавливает его, пока не нажата кнопка
- Запускает мотор А и останавливает его через 3 секунды.
- 🔍 Запускает мотор А через 3 секунды, если нажата кнопка
- ⊚ Запускает мотор А, вращает его 3 секунды или больше, пока не будет нажата кнопка
- Другое:

По блокам: программа включает мотор А, ждет 3 секунды, после чего ждет нажатия на среднюю кнопку. Если кнопка нажата — мотор выключается.

Есть ли разница в работе двух программ?*

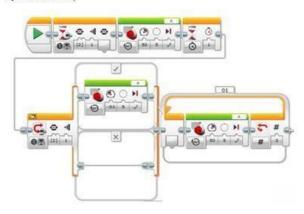

- @ Нет
- 🔘 В первой программе нажатие кнопки включает мотор, а во второй выключает
- 🔘 В первой программе нажатие кнопки выключает мотор, а во второй включает
- $\ \, \bigcirc$ В первой программе мотор включается, но не выключается. Во второй и включается и выключается

Другое:	

Первая программа в цикле включает мотор, если нажата кнопка — выключает его и ждет, пока кнопка не будет отпущена. Так как у нас цикл — после отпускания кнопки мотор опять включится.

Вторая программа выключает мотор, если нажата кнопка, и включает его, если не нажата. То есть, обе программы внешне работают одинаково.

Есть ли разница в работе двух программ? *



В первой программе стоит команда «играть звук 2 секунды до завершения». Это будет работать как блок ожидания — программа не будет выполняться дальше, пока не закончит проигрывать звук. Только после этого выполнится команда «выключить мотор».

Во второй программе команда «играть звук 2 секунды 1 раз». Она запустит проигрывания звука на 2 секунды, после чего выполнит следующую команду — «выключить мотор». То есть, звук ещё будет проигрываться, а мотор уже выключится.

То есть, во второй программе мотор выключится сразу после начала мелодии, а в первой — мотор будет крутиться все две секунды, пока играет мелодия и только после этого остановится.

Что произойдет, если нажимать на кнопку больше одной секунды? (все блоки мотора вращают на 5°) *

- Мотор А повернется на 10°
- Мотор А повернется на 20°
- Мотор А повернется на 15°
- Мотор А повернется на 5°
- О Другое:

Другое:

Программа ждет нажатия на кнопку, поворачивает мотор на 5 градусов вперед, ждет секунду, и если кнопка нажата, поворачивает на 5 градусов назад. После этого в цикле трижды мотор поворачивается на 5 градусов,

то есть, в сумме — на 15.

Если кнопка нажата больше 1 секунды — выполнятся все эти действия, т.е. мотор повернется на +5 - 5 + 5 + 5 + 5 = 15 градусов.

Что произойдет, если на 5 секунде под датчиком освещенности махнуть белым цветом? *

- На экране появится смайлик
- Программа начнет отсчитывать 6 секунд, после чего на экране появится смайлик
- Ничего
- 🖱 На экране появится смайлик, который исчезнет через 10 секунд
- О Другое:

Первая команда программы — ждать 6 секунд.

В это время программа не реагирует ни на какие сигналы от датчиков. Соответственно, если на 5 секунде махнуть перед датчиком белым цветом — это останется незамеченным.

После этого программа будет выполнять блок «ждать яркость отраженного цвета > 70» — эта яркость соответствует как раз белому цвету.

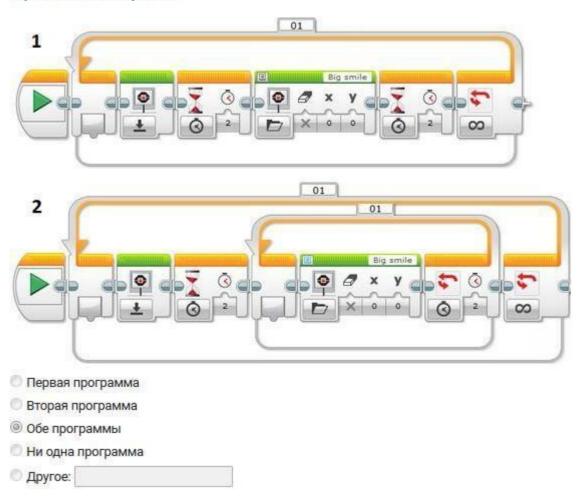
Пока перед датчиком снова не появится белый цвет программа дальше выполняться не будет, а значит, ничего происходить тоже не будет.

Какой блок не соответствует решению задачи: повернуть оба мотора на 0.5 оборота *



Bce	COO	TRET	CTR	VIOT
	000	100	010	4101

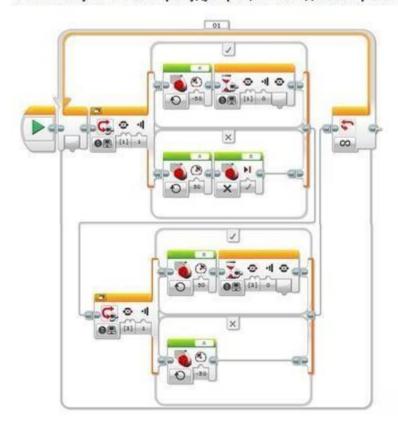
- 1-й блок
- 2-й блок
- 3-й блок
- Другое:


Первый блок поворачивает один мотор на 0,5 оборота, третий блок — второй мотор. Второй блок не нужен.

Какой блок не соответствует решению задачи: ждать нажатия датчика касания, после чего отсчитать 5 секунд и проиграть мелодию? *

Третий блок выводит на экран смайлик. По условию задачи — этого не требуется.

Какая из программ выполнит следующее: показывать и стирать с экрана смайлик через каждые 2 секунды? *



В первой программе в цикле: очищается экран, ожидается 2 секунды, выводится смайлик, ожидается 2 секунды.

Во второй программе — очищается экран, ожидается 2 секунды, в течении двух секунды в цикле выводится смайлик.

Внешне обе программы работают абсолютно одинаково.

В каком случае оба мотора будут вращаться в одном направлении? *

THE RESERVE	per unergonament		
0.0	CTCWC	nepag	кнопка

- Нажата правая кнопка
- Пажаты обе кнопки
- Не нажата ни одна кнопка

OVO	
Пругое:	
/ IUVI UE.	

Разберем, как будет работать программа, если нажата правая кнопка и не нажата левая.

Сначала проверяется нажатие левой кнопки. Если она не нажата запускается вперед со скоростью 50 мотор А, и останавливается мотор В.

Далее, проверяется правая кнопка. Если она нажата — запускается вперед мотор В и программа попадает на блок ожидания, который ждет отпускания кнопки В.

То есть, пока нажата правая кнопка крутится мотор В, и крутится вперед мотор А — ведь он был включен на предыдущей проверке, на предыдущем переключателе, и с тех пор других команд для него не было. В итоге, пока правая кнопка нажата — оба мотора крутятся вперед со скоростью 50.

Календарно-тематический план.

N	Плани- руемая дата	Название темы	Кол -во	теория	практика	Форма
1		Введение.	1	1	1	Эвристичес кая лекция

2	Конструктор LEGO Mindstorms EV3	1	1	-	Эвристиче	ская	лекция		
3	Конструкторы LEGO Mindstorms EV3, ресурсный набор.	2	-	2	Практичес	кое	занятие		
4	Микрокомпьютер (<i>Лекция)</i>	2	2	-	Эвристиче	ская	лекция		
5	Датчики	4	3	1	Практичес	кое	занятие с	элементам	и игры
6	Сервомотор EV3	4	3	1	Практичес	кое	занятие		
7	Программное обеспечение LEGO Mindstorms EV3	1	-	1	Эвристиче	ская	лекция		
8	Основы программирования EV3	2	2	-	Эвристиче	ская	лекция		
9	Первый робот и первая программа	4	-	4	Практичес	KOE	занятие с	элементам	и игры
10	Движения и повороты	6	4	2	Практичес	кое	занятие с	элементам	и игры
11	Воспроизведение звуков и управление звуком	4	3	1	Практичес	КОС	занятие		

12	Движение робота с ультразвуковым датчиком и датчиком касания	4	2	2	Практичес кое занятие
13	Обнаружение роботом черной линии и движение вдоль черной линии	4	2	2	Практичес кое занятие
14	Проект «Tribot»	6	-	6	Практичес кое занятие
15	Проект «Shooterbot»	6	-	6	Практичес кое занятие
16	Проект «Color Sorter»	6	-	6	Практичес кое занятие
17	Решение олимпиадных заданий	11	-	11	Практичес кое занятие

Условия реализации программы.

Занятия по дополнительной общеразвивающей программе «Робикум» проводятся в стационарном, типовом, освещенном и проветриваемом учебном кабинете, который отвечает требованиям санитарно-гигиенических норм, правилам техники безопасности, установленных для помещений, где работают обучающиеся, оснащенном типовыми столами и стульями с учетом физиологических особенностей обучающихся.

Материалы и инструменты.

Конструкторы LEGO Education Mindstorms EV3, компьютеры, проектор, экран.

Nº	Наименование	Фото	Кол-во	Ед. изм.
1	Набор для создания программируемых моделей и гусеничных роботов		2	шт.
1	Набор для создания программируемых моделей и гусеничных роботов	11000	1	шт.

2	Дополнительный набор для создания конвейеров		1	шт.
3	Дополнительный набор сложных зубчатых передач		1	шт.
4	Дополнительный набор звёздочек и цепь		1	шт.
5	Дополнительный набор внедорожных шин		1	шт.
6	Набор моторов для базового набора для изучения промышленной робототехники		1	шт.
7	Дополнительный набор моторов и сервоприводов ИП Неткачев		1	шт.
8	Дополнительный набор моторов и сервоприводов		1	ШТ.
9	Дополнительный набор моторов и сервоприводов	A second	1	шт.
10	Дополнительный набор всенаправленных колес		1	шт.
11	Дополнительный набор с джойстиком		1	шт.
12	Дополнительный набор с захватом		1	ШТ.

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат 665813868896249450789253550581075301583087309081

Владелец Ельчанинова Оксана Викторовна

Действителен С 11.09.2024 по 11.09.2025